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Abstract 

Artificial intelligence (AI) is the capacity of a digital computer or robot operated by a computer to 
carry out actions frequently performed by intelligent beings. The phrase is widely used in reference 
to the effort to create artificial intelligence (AI) systems that possess human-like cognitive abilities 
like the capacity for reasoning, meaning-finding, generalisation, and experience-based learning. It 
has been proven that computers can be programmed to perform extremely complicated tasks—like, 
for example, finding proofs for mathematical theorems or playing chess—with remarkable proficiency 
ever since the development of the digital computer in the 1940s. Nevertheless, despite ongoing 
improvements in computer processing speed and memory space, there are currently no programmes 
that can match human adaptability across a larger range of activities or those needing a substantial 
amount of background knowledge. 

Introduction  

Artificial intelligence (AI), the ability of a digital computer or computer-controlled robot to 

perform tasks commonly associated with intelligent beings. The term is frequently applied to the 

project of developing systems endowed with the intellectual processes characteristic of humans, such 

as the ability to reason, discover meaning, generalize, or learn from past experience. Since the 

development of the digital computer in the 1940s, it has been demonstrated that computers can be 

programmed to carry out very complex tasks—as, for example, discovering proofs for mathematical 

theorems or playing chess—with great proficiency. Still, despite continuing advances in computer 

processing speed and memory capacity, there are as yet no programs that can match human flexibility 

over wider domains or in tasks requiring much everyday knowledge. On the other hand, some 

programs have attained the performance levels of human experts and professionals in performing 

certain specific tasks, so that artificial intelligence in this limited sense is found in applications 

as diverse as medical diagnosis, computer search engines, and voice or handwriting recognition. 

(Read Ray Kurzweil’sBritannica essay on the future of “Nonbiological Man.”). 

https://scholar.google.com/citations?user=Al_mFqMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=g4Akfp8AAAAJ&hl=en&oi=sra
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https://www.britannica.com/technology/computer
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https://www.merriam-webster.com/dictionary/intellectual
https://www.britannica.com/technology/digital-computer
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The female wasp returns to her burrow with food, she first deposits it on the threshold, checks for 

intruders inside her burrow, and only then, if the coast is clear, carries her food inside. The real 

nature of the wasp’s instinctual behaviour is revealed if the food is moved a few inches away from 

the entrance to her burrow while she is inside: on emerging, she will repeat the whole procedure as 

often as the food is displaced. Intelligence—conspicuously absent in the case of Sphex—must include 

the ability to adapt to new circumstances. When the female wasp returns to her burrow with food, 

she first deposits it on the threshold, checks for intruders inside her burrow, and only then, if the 

coast is clear, carries her food inside. The real nature of the wasp’s instinctual behaviour is revealed 

if the food is moved a few inches away from the entrance to her burrow while she is inside: on 

emerging, she will repeat the whole procedure as often as the food is displaced. Artificial intelligence 

(AI), also known as machine intelligence, is a branch of computer science that focuses on building 

and managing technology that can learn to autonomously make decisions and carry out actions on 

behalf of a human being. 

AI is not a single technology. Instead, it is an umbrella term that includes any type of software or 

hardware component that supports machine learning, computer vision, natural language 

understanding, natural language generation, natural language processing and robotics. Today’s AI 

uses conventional CMOS hardware and the same basic algorithmic functions that drive traditional 

software. Future generations of AI are expected to inspire new types of brain-inspired circuits and 

architectures that can make data-driven decisions faster and more accurately than a human being 

can. Intelligence—conspicuously absent in the case of Sphex—must include the ability to adapt to new 

circumstances. When the female wasp returns to her burrow with food, she first deposits it on 

the threshold, checks for intruders inside her burrow, and only then, if the coast is clear, carries her 

food inside. The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a 

few inches away from the entrance to her burrow while she is inside: on emerging, she will repeat 

the whole procedure as often as the food is displaced. Intelligence—conspicuously absent in the case 

of Sphex—must include the ability to adapt to new circumstances. When the female wasp returns to 

her burrow with food, she first deposits it on the threshold, checks for intruders inside her burrow, 

and only then, if the coast is clear, carries her food inside. The real nature of the wasp’s instinctual 

behaviour is revealed if the food is moved a few inches away from the entrance to her burrow while 

https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.techopedia.com/definition/2178/complementary-metal-oxide-semiconductor-cmos
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
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she is inside: on emerging, she will repeat the whole procedure as often as the food is displaced. 

Intelligence—conspicuously absent in the case of Sphex—must include the ability to adapt to new 

circumstances. 

Future generations of AI are expected to inspire new types of brain-inspired circuits and architectures 

that can make data-driven decisions faster and more accurately than a human being can. 

Intelligence—conspicuously absent in the case of Sphex—must include the ability to adapt to new 

circumstances. When the female wasp returns to her burrow with food, she first deposits it on 

the threshold, checks for intruders inside her burrow, and only then, if the coast is clear, carries her 

food inside. The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a 

few inches away from the entrance to her burrow while she is inside: on emerging, she will repeat 

the whole procedure as often as the food is displaced. Intelligence—conspicuously absent in the case 

of Sphex—must include the ability to adapt to new circumstances. When the female wasp returns to 

her burrow with food, she first deposits it on the threshold, checks for intruders inside her burrow, 

and only then, if the coast is clear, carries her food inside. The real nature of the wasp’s instinctual 

behaviour is revealed if the food is moved a few inches away from the entrance to her burrow while 

she is inside: on emerging, she will repeat the whole procedure as often as the food is displaced. 

Intelligence—conspicuously absent in the case of Sphex—must include the ability to adapt to new 

circumstances. 

What is intelligence 

All but the simplest human behaviour is ascribed to intelligence, while even the most 

complicated insect behaviour is never taken as an indication of intelligence. What is the difference? 

Consider the behaviour of the digger wasp, Sphex ichneumoneus. When the female wasp returns to 

her burrow with food, she first deposits it on the threshold, checks for intruders inside her burrow, 

and only then, if the coast is clear, carries her food inside. The real nature of the wasp’s instinctual 

behaviour is revealed if the food is moved a few inches away from the entrance to her burrow while 

she is inside: on emerging, she will repeat the whole procedure as often as the food is displaced. 

Intelligence—conspicuously absent in the case of Sphex—must include the ability to adapt to new 

circumstances. When the female wasp returns to her burrow with food, she first deposits it on 

https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/topic/human-behavior
https://www.britannica.com/animal/insect
https://www.britannica.com/animal/wasp
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
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the threshold, checks for intruders inside her burrow, and only then, if the coast is clear, carries her 

food inside. The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a 

few inches away from the entrance to her burrow while she is inside: on emerging, she will repeat 

the whole procedure as often as the food is displaced. Intelligence—conspicuously absent in the case 

of Sphex—must include the ability to adapt to new circumstances. When the female wasp returns to 

her burrow with food, she first deposits it on the threshold, checks for intruders inside her burrow, 

and only then, if the coast is clear, carries her food inside. The real nature of the wasp’s instinctual 

behaviour is revealed if the food is moved a few inches away from the entrance to her burrow while 

she is inside: on emerging, she will repeat the whole procedure as often as the food is displaced. 

Intelligence—conspicuously absent in the case of Sphex—must include the ability to adapt to new 

circumstances. 

There are a number of different forms of learning as applied to artificial intelligence. The simplest 

is learning by trial and error. For example, a simple computer program for solving mate-in-

one chess problems might try moves at random until mate is found. The program might then store 

the solution with the position so that the next time the computer encountered the same position it 

would recall the solution. This simple memorizing of individual items and procedures—known as 

rote learning—is relatively easy to implement on a computer. More challenging is the problem 

of implementing what is called generalization. Generalization involves applying past experience 

to analogous new situations. For example, a program that learns the past tense of regular English 

verbs by rote will not be able to produce the past tense of a word such as jump unless it previously 

had been presented with jumped, whereas a program that is able to generalize can learn the “add ed” 

rule and so form the past tense of jump based on experience with similar verbs. 

The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a few inches away 

from the entrance to her burrow while she is inside: on emerging, she will repeat the whole 

procedure as often as the food is displaced. Intelligence—conspicuously absent in the case of Sphex—

must include the ability to adapt to new circumstances. When the female wasp returns to her burrow 

with food, she first deposits it on the threshold, checks for intruders inside her burrow, and only 

then, if the coast is clear, carries her food inside. The real nature of the wasp’s instinctual 

https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/technology/computer
https://www.britannica.com/topic/chess
https://www.merriam-webster.com/dictionary/implement
https://www.merriam-webster.com/dictionary/implementing
https://www.britannica.com/topic/generalization
https://www.merriam-webster.com/dictionary/analogous
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
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behaviour is revealed if the food is moved a few inches away from the entrance to her burrow while 

she is inside: on emerging, she will repeat the whole procedure as often as the food is displaced. 

Intelligence—conspicuously absent in the case of Sphex—must include the ability to adapt to new 

circumstances. When the female wasp returns to her burrow with food, she first deposits it on 

the threshold, checks for intruders inside her burrow, and only then, if the coast is clear, carries her 

food inside. The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a 

few inches away from the entrance to her burrow while she is inside: on emerging, she will repeat 

the whole procedure as often as the food is displaced. Intelligence—conspicuously absent in the case 

of Sphex—must include the ability to adapt to new circumstances. 

The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a few inches away 

from the entrance to her burrow while she is inside: on emerging, she will repeat the whole 

procedure as often as the food is displaced. Intelligence—conspicuously absent in the case of Sphex—

must include the ability to adapt to new circumstances. When the female wasp returns to her burrow 

with food, she first deposits it on the threshold, checks for intruders inside her burrow, and only 

then, if the coast is clear, carries her food inside. The real nature of the wasp’s instinctual 

behaviour is revealed if the food is moved a few inches away from the entrance to her burrow while 

she is inside: on emerging, she will repeat the whole procedure as often as the food is displaced. 

Intelligence—conspicuously absent in the case of Sphex—must include the ability to adapt to new 

circumstances. The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a 

few inches away from the entrance to her burrow while she is inside: on emerging, she will repeat 

the whole procedure as often as the food is displaced. Intelligence—conspicuously absent in the case 

of Sphex—must include the ability to adapt to new circumstances 

There are a number of different forms of learning as applied to artificial intelligence. The simplest 

is learning by trial and error. For example, a simple computer program for solving mate-in-

one chess problems might try moves at random until mate is found. The program might then store 

the solution with the position so that the next time the computer encountered the same position it 

would recall the solution. This simple memorizing of individual items and procedures—known as 

rote learning—is relatively easy to implement on a computer. More challenging is the problem 

https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/technology/computer
https://www.britannica.com/topic/chess
https://www.merriam-webster.com/dictionary/implement
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of implementing what is called generalization. Generalization involves applying past experience 

to analogous new situations. For example, a program that learns the past tense of regular English 

verbs by rote will not be able to produce the past tense of a word such as jump unless it previously 

had been presented with jumped, whereas a program that is able to generalize can learn the “add ed” 

rule and so form the past tense of jump based on experience with similar verbs. 

on emerging, she will repeat the whole procedure as often as the food is displaced. Intelligence—

conspicuously absent in the case of Sphex—must include the ability to adapt to new circumstances. 

There are a number of different forms of learning as applied to artificial intelligence. The simplest 

is learning by trial and error. For example, a simple computer program for solving mate-in-

one chess problems might try moves at random until mate is found. The program might then store 

the solution with the position so that the next time the computer encountered the same position it 

would recall the solution. This simple memorizing of individual items and procedures—known as 

rote learning—is relatively easy to implement on a computer. More challenging is the problem 

of implementing what is called generalization. Generalization involves applying past experience 

to analogous new situations. For example, a program that learns the past tense of regular English 

verbs by rote will not be able to produce the past tense of a word such as jump unless it previously 

had been presented with jumped, whereas a program that is able to generalize can learn the “add ed” 

rule and so form the past tense of jump based on experience with similar verbs. 

The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a few inches away 

from the entrance to her burrow while she is inside: on emerging, she will repeat the whole 

procedure as often as the food is displaced. Intelligence—conspicuously absent in the case of Sphex—

must include the ability to adapt to new circumstances. When the female wasp returns to her burrow 

with food, she first deposits it on the threshold, checks for intruders inside her burrow, and only 

then, if the coast is clear, carries her food inside. The real nature of the wasp’s instinctual 

behaviour is revealed if the food is moved a few inches away from the entrance to her burrow while 

she is inside: on emerging, she will repeat the whole procedure as often as the food is displaced. 

Intelligence—conspicuously absent in the case of Sphex—must include the ability to adapt to new 

circumstances. When the female wasp returns to her burrow with food, she first deposits it on 

https://www.merriam-webster.com/dictionary/implementing
https://www.britannica.com/topic/generalization
https://www.merriam-webster.com/dictionary/analogous
https://www.britannica.com/technology/computer
https://www.britannica.com/topic/chess
https://www.merriam-webster.com/dictionary/implement
https://www.merriam-webster.com/dictionary/implementing
https://www.britannica.com/topic/generalization
https://www.merriam-webster.com/dictionary/analogous
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
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the threshold, checks for intruders inside her burrow, and only then, if the coast is clear, carries her 

food inside. The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a 

few inches away from the entrance to her burrow while she is inside: on emerging, she will repeat 

the whole procedure as often as the food is displaced. Intelligence—conspicuously absent in the case 

of Sphex—must include the ability to adapt to new circumstances. 

To reason is to draw inferences appropriate to the situation. Inferences are classified as 

either deductive or inductive. An example of the former is, “Fred must be in either the museum or 

the café. He is not in the café; therefore he is in the museum,” and of the latter, “Previous accidents 

of this sort were caused by instrument failure; therefore this accident was caused by instrument 

failure.” The most significant difference between these forms of reasoning is that in the deductive 

case the truth of the premises guarantees the truth of the conclusion, whereas in the inductive case 

the truth of the premise lends support to the conclusion without giving absolute assurance. 

Inductive reasoning is common in science, where data are collected and tentative models are 

developed to describe and predict future behaviour—until the appearance of anomalous data forces 

the model to be revised. Deductive reasoning is common in mathematics and logic, where elaborate 

structures of irrefutable theorems are built up from a small set of basic axioms and rules. 

The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a few inches away 

from the entrance to her burrow while she is inside: on emerging, she will repeat the whole 

procedure as often as the food is displaced. Intelligence—conspicuously absent in the case of Sphex—

must include the ability to adapt to new circumstances. When the female wasp returns to her burrow 

with food, she first deposits it on the threshold, checks for intruders inside her burrow, and only 

then, if the coast is clear, carries her food inside. The real nature of the wasp’s instinctual 

behaviour is revealed if the food is moved a few inches away from the entrance to her burrow while 

she is inside: on emerging, she will repeat the whole procedure as often as the food is displaced. 

Intelligence—conspicuously absent in the case of Sphex—must include the ability to adapt to new 

circumstances. When the female wasp returns to her burrow with food, she first deposits it on 

the threshold, checks for intruders inside her burrow, and only then, if the coast is clear, carries her 

food inside. The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a 

https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/inferences
https://www.britannica.com/topic/deduction-reason
https://www.britannica.com/topic/induction-reason
https://www.merriam-webster.com/dictionary/premises
https://www.merriam-webster.com/dictionary/premise
https://www.merriam-webster.com/dictionary/assurance
https://www.britannica.com/science/science
https://www.britannica.com/science/mathematics
https://www.britannica.com/topic/logic
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
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few inches away from the entrance to her burrow while she is inside: on emerging, she will repeat 

the whole procedure as often as the food is displaced. Intelligence—conspicuously absent in the case 

of Sphex—must include the ability to adapt to new circumstances. 

To reason is to draw inferences appropriate to the situation. Inferences are classified as 

either deductive or inductive. An example of the former is, “Fred must be in either the museum or 

the café. He is not in the café; therefore he is in the museum,” and of the latter, “Previous accidents 

of this sort were caused by instrument failure; therefore this accident was caused by instrument 

failure.” The most significant difference between these forms of reasoning is that in the deductive 

case the truth of the premises guarantees the truth of the conclusion, whereas in the inductive case 

the truth of the premise lends support to the conclusion without giving absolute assurance. 

Inductive reasoning is common in science, where data are collected and tentative models are 

developed to describe and predict future behaviour—until the appearance of anomalous data forces 

the model to be revised. Deductive reasoning is common in mathematics and logic, where elaborate 

structures of irrefutable theorems are built up from a small set of basic axioms and rules. 

The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a few inches away 

from the entrance to her burrow while she is inside: on emerging, she will repeat the whole 

procedure as often as the food is displaced. Intelligence—conspicuously absent in the case of Sphex—

must include the ability to adapt to new circumstances. When the female wasp returns to her burrow 

with food, she first deposits it on the threshold, checks for intruders inside her burrow, and only 

then, if the coast is clear, carries her food inside. The real nature of the wasp’s instinctual 

behaviour is revealed if the food is moved a few inches away from the entrance to her burrow while 

she is inside: on emerging, she will repeat the whole procedure as often as the food is displaced. 

Intelligence—conspicuously absent in the case of Sphex—must include the ability to adapt to new 

circumstances. When the female wasp returns to her burrow with food, she first deposits it on 

the threshold, checks for intruders inside her burrow, and only then, if the coast is clear, carries her 

food inside. The real nature of the wasp’s instinctual behaviour is revealed if the food is moved a 

few inches away from the entrance to her burrow while she is inside: on emerging, she will repeat 

https://www.merriam-webster.com/dictionary/inferences
https://www.britannica.com/topic/deduction-reason
https://www.britannica.com/topic/induction-reason
https://www.merriam-webster.com/dictionary/premises
https://www.merriam-webster.com/dictionary/premise
https://www.merriam-webster.com/dictionary/assurance
https://www.britannica.com/science/science
https://www.britannica.com/science/mathematics
https://www.britannica.com/topic/logic
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
https://www.merriam-webster.com/dictionary/threshold
https://www.britannica.com/animal/insect/Role-of-hormones#ref41274
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the whole procedure as often as the food is displaced. Intelligence—conspicuously absent in the case 

of Sphex—must include the ability to adapt to new circumstances. 

Problem solving, particularly in artificial intelligence, may be characterized as a systematic search 

through a range of possible actions in order to reach some predefined goal or solution. Problem-

solving methods divide into special purpose and general purpose. A special-purpose method is tailor-

made for a particular problem and often exploits very specific features of the situation in which the 

problem is embedded. In contrast, a general-purpose method is applicable to a wide variety of 

problems. To reason is to draw inferences appropriate to the situation. Inferences are classified as 

either deductive or inductive. An example of the former is, “Fred must be in either the museum or 

the café. He is not in the café; therefore he is in the museum,” and of the latter, “Previous accidents 

of this sort were caused by instrument failure; therefore this accident was caused by instrument 

failure.” The most significant difference between these forms of reasoning is that in the deductive 

case the truth of the premises guarantees the truth of the conclusion, whereas in the inductive case 

the truth of the premise lends support to the conclusion without giving absolute assurance. 

Inductive reasoning is common in science, where data are collected and tentative models are 

developed to describe and predict future behaviour—until the appearance of anomalous data forces 

the model to be revised. 

To reason is to draw inferences appropriate to the situation. Inferences are classified as 

either deductive or inductive. An example of the former is, “Fred must be in either the museum or 

the café. He is not in the café; therefore he is in the museum,” and of the latter, “Previous accidents 

of this sort were caused by instrument failure; therefore this accident was caused by instrument 

failure.” The most significant difference between these forms of reasoning is that in the deductive 

case the truth of the premises guarantees the truth of the conclusion, whereas in the inductive case 

the truth of the premise lends support to the conclusion without giving absolute assurance. 

Inductive reasoning is common in science, where data are collected and tentative models are 

developed to describe and predict future behaviour—until the appearance of anomalous data forces 

the model to be revised. Deductive reasoning is common in mathematics and logic, where elaborate 

structures of irrefutable theorems are built up from a small set of basic axioms and rules. 

https://www.merriam-webster.com/dictionary/inferences
https://www.britannica.com/topic/deduction-reason
https://www.britannica.com/topic/induction-reason
https://www.merriam-webster.com/dictionary/premises
https://www.merriam-webster.com/dictionary/premise
https://www.merriam-webster.com/dictionary/assurance
https://www.britannica.com/science/science
https://www.merriam-webster.com/dictionary/inferences
https://www.britannica.com/topic/deduction-reason
https://www.britannica.com/topic/induction-reason
https://www.merriam-webster.com/dictionary/premises
https://www.merriam-webster.com/dictionary/premise
https://www.merriam-webster.com/dictionary/assurance
https://www.britannica.com/science/science
https://www.britannica.com/science/mathematics
https://www.britannica.com/topic/logic
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through a range of possible actions in order to reach some predefined goal or solution. Problem-

solving methods divide into special purpose and general purpose. A special-purpose method is tailor-

made for a particular problem and often exploits very specific features of the situation in which the 

problem is embedded. In contrast, a general-purpose method is applicable to a wide variety of 

problems. To reason is to draw inferences appropriate to the situation. Inferences are classified as 

either deductive or inductive. An example of the former is, “Fred must be in either the museum or 

the café. He is not in the café; therefore he is in the museum,” and of the latter, “Previous accidents 

of this sort were caused by instrument failure; therefore this accident was caused by instrument 

failure.” The most significant difference between these forms of reasoning is that in the deductive 

case the truth of the premises guarantees the truth of the conclusion, whereas in the inductive case 

the truth of the premise lends support to the conclusion without giving absolute assurance. 

Inductive reasoning is common in science, where data are collected and tentative models are 

developed to describe and predict future behaviour—until the appearance of anomalous data forces 

the model to be revised. 
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